Existence, Asymptotics and Uniqueness of Traveling Waves for Nonlocal Diffusion Systems with Delayed Nonlocal Response

نویسندگان

  • Zhixian Yu
  • Rong Yuan
چکیده

Abstract. In this paper, we deal with the existence, asymptotic behavior and uniqueness of travelingwaves for nonlocal diffusion systems with delay and global response. We first obtain the existence of traveling wave front by using upperlower solutions method and Schauder’s fixed point theorem for c > c∗ and using a limiting argument for c = c∗. Secondly, we find a priori asymptotic behavior of (monotone or non-monotone) traveling waves with the help of Ikehara’s Theorem by constructing a Laplace transform representation of a solution. Thirdly, we show that the traveling wave front for each given wave speed is unique up to a translation. Last, we apply our results to two models with delayed nonlocal response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay

This paper is concerned with the existence, uniqueness and globally asymptotic stability of traveling wave fronts in the quasi-monotone reaction advection diffusion equations with nonlocal delay. Under bistable assumption, we construct various pairs of superand subsolutions and employ the comparison principle and the squeezing technique to prove that the equation has a unique nondecreasing trav...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Existence, Uniqueness, and Asymptotic Stability of Traveling Waves in Nonlocal Evolution Equations

The existence, uniqueness, and global exponential stability of traveling wave solutions of a class of nonlinear and nonlocal evolution equations are established. It is assumed that there are two stable equilibria so that a tr aveling wave is a solution that connects them. A basic assumption is the comparison principle: a smaller initial value produces a smaller solution. When applied to di eren...

متن کامل

Invasion Generates Periodic Traveling Waves (Wavetrains) in Predator-Prey Models with Nonlocal Dispersal

Periodic Traveling waves (wavetrains) have been studied extensively in systems of reaction-diffusion equations. An important motivation for this work is the identification of periodic Traveling waves of abundance in ecological data sets. However, for many natural populations diffusion is a poor representation of movement, and spatial convolution with a dispersal kernel is more realistic because...

متن کامل

Existence, Uniqueness and Stability of Traveling Wavefronts for Nonlocal Dispersal Equations with Convolution Type Bistable Nonlinearity

This article concerns the bistable traveling wavefronts of a nonlocal dispersal equation with convolution type bistable nonlinearity. Applying a homotopy method, we establish the existence of traveling wavefronts. If the wave speed does not vanish, i.e. c 6= 0, then the uniqueness (up to translation) and the globally asymptotical stability of traveling wavefronts are proved by the comparison pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013