Existence, Asymptotics and Uniqueness of Traveling Waves for Nonlocal Diffusion Systems with Delayed Nonlocal Response
نویسندگان
چکیده
Abstract. In this paper, we deal with the existence, asymptotic behavior and uniqueness of travelingwaves for nonlocal diffusion systems with delay and global response. We first obtain the existence of traveling wave front by using upperlower solutions method and Schauder’s fixed point theorem for c > c∗ and using a limiting argument for c = c∗. Secondly, we find a priori asymptotic behavior of (monotone or non-monotone) traveling waves with the help of Ikehara’s Theorem by constructing a Laplace transform representation of a solution. Thirdly, we show that the traveling wave front for each given wave speed is unique up to a translation. Last, we apply our results to two models with delayed nonlocal response.
منابع مشابه
Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay
This paper is concerned with the existence, uniqueness and globally asymptotic stability of traveling wave fronts in the quasi-monotone reaction advection diffusion equations with nonlocal delay. Under bistable assumption, we construct various pairs of superand subsolutions and employ the comparison principle and the squeezing technique to prove that the equation has a unique nondecreasing trav...
متن کاملExistence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem
In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0
متن کاملExistence, Uniqueness, and Asymptotic Stability of Traveling Waves in Nonlocal Evolution Equations
The existence, uniqueness, and global exponential stability of traveling wave solutions of a class of nonlinear and nonlocal evolution equations are established. It is assumed that there are two stable equilibria so that a tr aveling wave is a solution that connects them. A basic assumption is the comparison principle: a smaller initial value produces a smaller solution. When applied to di eren...
متن کاملInvasion Generates Periodic Traveling Waves (Wavetrains) in Predator-Prey Models with Nonlocal Dispersal
Periodic Traveling waves (wavetrains) have been studied extensively in systems of reaction-diffusion equations. An important motivation for this work is the identification of periodic Traveling waves of abundance in ecological data sets. However, for many natural populations diffusion is a poor representation of movement, and spatial convolution with a dispersal kernel is more realistic because...
متن کاملExistence, Uniqueness and Stability of Traveling Wavefronts for Nonlocal Dispersal Equations with Convolution Type Bistable Nonlinearity
This article concerns the bistable traveling wavefronts of a nonlocal dispersal equation with convolution type bistable nonlinearity. Applying a homotopy method, we establish the existence of traveling wavefronts. If the wave speed does not vanish, i.e. c 6= 0, then the uniqueness (up to translation) and the globally asymptotical stability of traveling wavefronts are proved by the comparison pr...
متن کامل